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Abstract. The Levinson’s theorem in a semiconductor quantum dot is analysed. If the well 
and barrier effective masses differ, the zero-energy wavefunction phaseshift is shown to be 
~ ( 0 )  = I ~ M ,  ( Mb being the number of hound states) for even values of azimuthal quantum 
number 1, and n(M,+l)  for odd 1. For constant effective mass, however, n ( 0 ) = w M b  
regardless of the parity of 1. Furthennore, while 7-0 in the large-energy limit for the 
constant effective mass, the essentially different behaviour of 7 takes place if the effective 
mass is non-uniform. 

Recent advances in microfabrication technologies have enabled the realization of 
various semiconductor quantum structures, attracting considerable attention due to 
novel physical properties not encountered in conventional materials. Among the most 
interesting of them are quantum dots (or inverse superatoms) [ 1, 21-spherical semicon- 
ductor quantum wells in finite-height barriers. Along with the potential, it is also the 
effective mass that varies in the structure. In this letter we consider the relation between 
the zero-energy wavefunction phaseshift and the number of bound states. This problem 
has been tackled in the literature since the pioneering work of Levinson [3], for both 
the one-dimensional and three-dimensional systems, but with the assumption of con- 
stant electron mass. Here we generalize these results allowing forthe spatially dependent 
electron (effective) mass, as indeed is the case in real structures of that type. 

A real semiconductor quantum dot (QD)  is a sphere of semiconductor A embedded 
in semiconductor B bulk, chosen so that the conduction band edge of A is below that 
of B, and in that sense A makes a spherical quantum well for electrons, B being the 
barrier. Usually, but not necessarily, the transition (interface) between the two is 
abrupt, making the potential and the effective mass not only spatially dependent, but 
also discontinuous. In this confining potential the electron bound states may exist, 
their energies being characterized by radial (n) azimuthal (I) ,  and magnetic (m) 
quantum numbers. Due to the spherical symmetry the Schrodinger equation for this 
system is separable, and (within the envelope-function effective mass approximation) 
its radial part X(r ) / r  reads 

where the potential U(r) and the effective mass m(r) are only radially dependent (e.g. 
m ( r ) = m ,  for r < R o ,  and m ( r ) =  mb for r>R, ,  Ro being the QD radius, and U(r) is 
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the band edge plus the self-consistent electrostatic potential). For example, in conven- 
tional QDS, with electrostatic potential neglected, U ( r )  = 0 for r > Ro and U(r) = - IAEJ 
for r <  Ro, where AEc is the conduction band edge discontinuity. Solutions of (1) may 
be expressed via the Jost functions fr(*k,  r), the asymptotic form r +  +m of which is 

k2=-E. 2mb 

fi2 
fr(*k,r)=i' exp(*ikr) 

The general solution of (1) is 

X~(k,r)=Afr(k, r )+Bfr ( -k , r )  (3) 

where A and B are constants to be determined from the boundary conditions at r+O, 
that have the form [4] 

Using (3) and (4), and introducingf,(*k) as 

the expression for the wavefunction Xf(r) is 

On the other hand, the asymptotic expression for Xf(r) as r++m may be written as 

Xl(r)=constantxsin(kr-ffw+?I) (7) 

where TI=  w(k) is the phaseshift corresponding to the wavevector k Comparing (6 )  
and (7) we get an important relation 

fr(k)/fr(-k) = exp(2ivJ. (8) 

Now define the function hf(k, r) =fr (k ,  r ) / &  where& stands for$(& r) calculated 
for a large enough k (or E), such that U(r) could be neglected when solving equation 
(l), i.e. by formally setting U ( r )  = O t .  Then,& in the well and barrier reads (in further 
consideration subscript I will be omitted) 

(9) 
fm=exp[-i(kr-k/2)] for r>RO 
fm = C exp[i(k,r - 17r/2)1+ D exp[-i(k,r - 17r/2)] for r < Ro 

where k ,=  Rk-(m,/mb)l'z~ and the constants C and D are determined from the 
boundary conditions: X(r) and (dX/dr-X/r)/m(r) are continuous for all r, 

t The meaning of E - +m ( k  + +m) in this derivation is as follows: E U(r) l  for all r and kR, >> 1 (so 
that corresponding Bessel functions may be approximated by exponential ones). Certainly, the effective 
mass approximation itself is valid in a limited energy interval, typically not more than 0.5 eV above the 
conduction band edge. Thus, all these considerations may be expected to be valid for realistic structures 
with not too large band offsets and also large enough QD radii, the latter being a condition for using the 
effective mass approximation anyway. For structure parameten not meeting the above conditions, a much 
more elaborate theory is required, although the derivation presented here would remain formally c o m a .  
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specifically at r = R ,  in this instance. For analysing the behaviour of v ( k )  it is also 
necessary to find the ratio fk/ fm. The appropriate calculation gives 

( 1 1 )  
(-1)' C ( K )  =- [(l +iK,) - R'(1 +iK)] exp[-i(K +Kl) l  
2iK, 

1 
D ( K )  = - [ R 2 ( 1  2iK, + iK)- l ( l  +XI)] exp[i(K -&)I (12) 

with K = kR,, and K, = k,Ro. If the effective mass spatial dependence is neglected 
(or there is none), i.e. R = 1, then C = O ,  D =  1, and hence A = 1 for all values of K. 

We now consider the two cases separately: 

(i) The azimuthal quantum number I is even ( I = O ,  2,4,. . . ). Then 

(13) 
sin K, K 

C( K ) + D ( K )  =- (R2-l)+cos & + i -  R2 sin K ,  =fm 
K, K ,  

and therefore 

h ( K ) / h ( - K )  =exp[2i[q(K)+ K +o(K)]] (14) 
where w ( K )  is the argument of the complex number C ( - K ) + D ( - K ) .  Equation (14) 
is valid for all K P O ,  i.e. E P O .  Now o ( K )  should be explored very carefully. Bearing 
in mind that o ( K )  is (taken to be) a continuous function of K, it is given by 

where w ( 0 )  is an integer multiple of ?r, and N ( K ) ,  or N ( K , )  is given in figure 1. In 
the special case of constant effective mass ( R =  l ) ,  o ( K ) = - K + o ( O ) .  

We also note that, from (6), bound states are obtained from f ( k )  = 0, the solutions 
being on the negative part of the imaginary k axis (the very special case f (0 )  =0, i.e. 
the possibility of zero-energy bound state, will be discussed elsewhere). Bearing (13) 
in mind, we conclude that the number of solutions of h ( K )  is equal to the number of 
solutions off (k ) ,  i.e. equal to the number of bound states Mb.  

NMJf  

.i I 
1 1 r!, , [ 

I 
lx,=135 tX2;C6S I x , m 2  

ffi? ff mi? Z l l  5W2 K, 

Figure 1. An example dependence of N(K,) ,  equation (19) in the case of R < 1 (specifically 
R1= 0.7), typically encountered in semiconductor QDS. Values xi are the solutions of 
K , C O ~ K , - ( ~ - R ~ ) = O ,  with R'=m,lm,. If R > 1 ,  the xi are then in the intervals 
( ~ / 2 ,  D), (3n/2,2a), . . . . 

0 
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Next, we integrate the function h ' ( K ) / h ( K )  along a semicircular contour C, with 
radius K,.,, belonging to the bottom half of the complex K plane, that encompasses 
all Mb bound states. The result of the integration should be 

and the explicit integration along C, with ILX+ +m, gives 

d =[*(K,, ,)  - dO)l+K[o(K)  - 4 O ) l .  (17) 
The phaseshift for very large K ,  q(KmaX), is determined from 

R'K tan(q+K)= 
Kl cot K ,  - (1 - R2)' 

Since q ( K )  is a continuous function, assuming that for R =  1 g ( K )  tends to zero in 
the large-K limit, we have 

R2K ] - K + l r N ( K )  
KIcotKI-(1-R2) 

q(K++oo)=tan-' 

with N(K) given in figure 1. From (17) and (19) we findt 

q(0)  = TMb. 

Therefore, Levinson's theorem remains valid for the non-uniform effective mass 
case, R # 1 as well, provided the azimuthal quantum number I is even. 

($ m.e il7im!!!hl! nm?b.r ! is odd !! = 1,3,5,. . . ) Performing the pzme procedure 
as for even I we arrive at the expression for h ( K )  

If R # 1, then one of the solutions of h ( K )  is in K = 0, but if R = 1 then h(0)  f 0. In 
the case R # 1 the o ( K )  dependence can be written as 

o ( K )  = tan-' [ K ,  cot K , + ( l  R2K - R 2 )  ] - l r N , ( K ) + o ( O )  

where N , ( K )  is equal to N ( K ) ,  given in figure 1, except that the xi are solutions of 
K, tanK,+(1-R2)=0. The constant w ( O ) + r / 2  is equal to an arbitrary integer ( L )  

obtained directly from (22). because w ( 0 )  also depends on R: now it has to be written 
as Llr, therefore Ao = - K  for R = 1. 

With the same conditions as for even 1, the phaseshift y ( K  + +a) can be written as 

- . . IL- t -  -P - A.. .La -&La- I.^-.rl : P  D - 1  ehn Ailnrplra A,. . - , . . (L' l_ , . .  In )  rnnnnt ha r,,u,,,yrv U1 w. "11 Ulci u,,,r, ,,P,,", ,I n - I t . L I  "I.,.,.C..II.I o w  -.",x., W,", -.. .... "L "I 

q ( K  + +a) = -tan-' [ K ,  tan K,+( l  R2K -R2) ] + T N , ( K ) - K + ~ .  2 (23) 

Obviously, from (23), v ( K + + m )  equals zero for R = 1. 

t As often quoted in literature [5] the quantity of physical interest is q ( O ) - q ( K + + m ) .  All the results in 
this paper may be considered in terms of this quantity, but we have adopted the usual convention 
q ( K  + +m)+O for R = 1 (constant effective mass case), and evaluate q(0) explicitly. 
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Finally, since K = 0 is one of the zeros of h( K )  if R # 1, the semicircular integration 
contour used above has to  be changed, and a semi-annular contour that circumvents 
zero, with the inner radius K ,  ( K .  + 0). used instead. Proceeding along the same lines 
as for even I we get 

?(o)=n(Mb+l) (24) 

whiie For R = i ihe coniour remains semicircuiar, ieading to 

7(0)=7rMb. (25)  

It may seem unusual that the phase undergoes an abrupt change when R vanes 
smoothly when crossing unity ( m ,  = mb), while the physics apparently should not 
change. The same kind of discontinuity also appears in the constant effective mass 
case, when the system parameters are vaned so that a bound state just appears, or 
disappears ( I=  0 andf;(O) =0, equation ( 5 . 1 5 )  in [4]). Certainly, physically measurable 
quantities, like electron density, depending on the wavefunction modulus, will not 
undergo any abrupt change. 

In conclusion, the zero-energy phase shift ~ ( 0 )  in the quantum dot is found to be 
eqwai io n times ihe number of bound ieveis hrb oniy ir' the eiieciive mass is consiani. 
If the effective mass is non-uniform, as indeed it is in real systems, the above expression 
remains valid for even values of the azimuthal quantum number I only. For odd I 
values, however, q(O)= T(Mb+l). These results may be of importance for the fully 
self-consistent solution procedure that includes both hound and continuum states in 
semiconductor QDS. 

Another interesting result is that the asymptotic behaviour of the phaseshift q ( K )  
in !he large-energy limit is also essentially different in the constant effective mass, and 
spatially dependent effective mass cases, q ( K )  tending to zero in the former, and being 
K dependent, (19) and (23), in the latter. 
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